Issue |
E3S Web Conf.
Volume 17, 2017
9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2017
|
|
---|---|---|
Article Number | 00075 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/20171700075 | |
Published online | 24 May 2017 |
Hydraulic analysis of functioning of the drainage channel with increased retention capacity
Department of Infrastructure and Sustainable Development, Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
* Corresponding author: kp@prz.edu.pl
Hydraulic overload of networks and its related objects is a problem that is more and more common in drainage systems. The most popular way to prevent it from its occurring is to increase the storage capacity of the system. At present, there are numerous solutions allowing to increase retention in drainage systems, with the selection of the most beneficial one being dependent on numerous factors; it must also be preceded by a technical and financial analysis. Financial analysis is of particular importance here, since due to significant dimensions and complicated structure, these objects require high investment outlays for its construction. As a consequence, it is a priority to undertake actions aimed at developing such solutions that will allow for significant increases of retention in the drainage system, and cost reductions at the same time. One of such solutions is the Underground tank for combined sewage and stormwater that is now patent-pending. The application of this solution allows to multiply retention capacity of the drainage system, without the necessity of modernizing the existing sewer system. This paper presents the application potential of the subject method for increasing sewer retention, along with its hydraulic function analysis. The research carried out and presented was based on the analysis of individual phases of functioning of the subject solution.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.