Issue |
E3S Web Conf.
Volume 17, 2017
9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2017
|
|
---|---|---|
Article Number | 00078 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/20171700078 | |
Published online | 24 May 2017 |
Numerical modelling of sulphate ion concentration in wastewater from a closed cooling system
Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
* Corresponding author: pawel.regucki@pwr.edu.pl
The paper presents a mathematical model that allows for predicting daily changes of sulphate ion concentration in water circulating in a closed cooling system consisting of condensers and cooling towers. This is an important issue because an excessive and uncontrolled increase in the concentration of SO42− in the circulating water may cause the corrosion of concrete parts of the channels and cooling towers, as well as an increase in the concentration of calcium salts, which can accelerate the process of its deposition on the exchange surfaces inside condensers. The goal of the paper is to propose an original mathematical model, which under certain simplifications poses an analytical solution to this problem. The approach enables calculating the asymptotic value of the sulphate ion concentration in circulating water, as well as the minimal volumetric flow rate of wastewater allowing the SO42− ion concentration to be preserved below legal limits. The simplified analytical solution enables indicating the optimal volumetric flow rate of wastewater fitting the actual number of working power units. This is especially important because the daily amount of water released from the cooling system as wastewater usually reaches a level of several thousand m3 and its proper management could significantly reduce system maintenance costs.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.