Issue |
E3S Web Conf.
Volume 22, 2017
International Conference on Advances in Energy Systems and Environmental Engineering (ASEE17)
|
|
---|---|---|
Article Number | 00063 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/20172200063 | |
Published online | 07 November 2017 |
Monitoring of drug resistance amplification and attenuation with the use of tetracycline-resistant bacteria during wastewater treatment
1
Department of Environmental Microbiology, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 1, 10-957 Olsztyn, Poland
2
Department of Food and Industrial Microbiology, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
* Corresponding author: monika.harnisz@uwm.edu.pl
The objective of this study was to monitor changes (amplification or attenuation) in antibiotic resistance during wastewater treatment based on the ecology of tetracycline-resistant bacteria. The untreated and treated wastewater were collected in four seasons. Number of tetracycline-(TETR) and oxytetracycline-resistant (OTCR) bacteria, their qualitative composition, minimum inhibitory concentrations (MICs), sensitivity to other antibiotics, and the presence of tet (A, B, C, D, E) resistance genes were determined. TETR and OTCR counts in untreated wastewater were 100 to 1000 higher than in treated effluent. OTCR bacterial counts were higher than TETR populations in both untreated and treated wastewater. TETR isolates were not dominated by a single bacterial genus or species, whereas Aeromonas hydrophila and Aeromonas sobria were the most common in OTCR isolates. The treatment process attenuated the drug resistance of TETR bacteria and amplified the resistance of OTCR bacteria. In both microbial groups, the frequency of tet(A) gene increased in effluent in comparison with untreated wastewater. Our results also indicate that treated wastewater is a reservoir of multiple drug-resistant bacteria as well as resistance determinants which may pose a health hazard for humans and animals when released to the natural environment.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.