Issue |
E3S Web Conf.
Volume 32, 2018
EENVIRO 2017 Workshop - Advances in Heat and Transfer in Built Environment
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/20183201015 | |
Published online | 21 February 2018 |
Preliminary Study on a Reduced Scaled Model Regarding the Air Diffusion inside a Crew Quarter on Board of the ISS
1
CAMBI Research Center, Technical University of Civil Engineering Bucharest, 021414 Bucharest, Romania
2
Technical University of Cluj Napoca, Department of Mechanical Engineering 400020 Cluj - Napoca, Romania
* Corresponding author: mihnea.sandu@utcb.ro
The paper focus on the air quality inside the Crew Quarters on board of the International Space Station. Several issues to improve were recorded by NASA and ESA and most important of them are the following: noise level reduction, CO2 accumulation reduction and dust accumulation reduction. The study in this paper is centred on a reduced scaled model used to provide simulations related to the air diffusion inside the CQ. It is obvious that a new ventilation system is required to achieve the three issues mentioned above, and the solutions obtained by means of numerical simulation need to be validated by experimental approach. First of all we have built a reduced scaled physical model to simulate the flow pattern inside the CQ and the equipment inside the CQ has been reproduced using a geometrical scale ratio. The flow pattern was considered isothermal and incompressible. The similarity criteria used was the Reynolds number to characterize the flow pattern and the length scale was set at value 1/4. Water has been used inside the model to simulate air. Velocity magnitude vectors have been obtained using PIV measurement techniques.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.