Issue |
E3S Web Conf.
Volume 32, 2018
EENVIRO 2017 Workshop - Advances in Heat and Transfer in Built Environment
|
|
---|---|---|
Article Number | 01024 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/20183201024 | |
Published online | 21 February 2018 |
Urban sound energy reduction by means of sound barriers
Research Center CAMBI, Technical University of Civil Engineering of Bucharest, Romania
* Corresponding author: viordach@yahoo.com
In urban environment, various heating ventilation and air conditioning appliances designed to maintain indoor comfort become urban acoustic pollution vectors due to the sound energy produced by these equipment. The acoustic barriers are the recommended method for the sound energy reduction in urban environment. The current sizing method of these acoustic barriers is too difficult and it is not practical for any 3D location of the noisy equipment and reception point. In this study we will develop based on the same method a new simplified tool for acoustic barriers sizing, maintaining the same precision characteristic to the classical method. Abacuses for acoustic barriers sizing are built that can be used for different 3D locations of the source and the reception points, for several frequencies and several acoustic barrier heights. The study case presented in the article represents a confirmation for the rapidity and ease of use of these abacuses in the design of the acoustic barriers.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.