Issue |
E3S Web Conf.
Volume 34, 2018
International Conference on Civil & Environmental Engineering (CENVIRON 2017)
|
|
---|---|---|
Article Number | 01035 | |
Number of page(s) | 7 | |
Section | Civil | |
DOI | https://doi.org/10.1051/e3sconf/20183401035 | |
Published online | 19 March 2018 |
Physical and rheological properties of Titanium Dioxide modified asphalt
1
Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 83000 Batu Pahat, Johor Malaysia
2
MINT-SRC, UniversitiTun Hussein Onn Malaysia, 86400, Parit Raja, BatuPahat Johor, Malaysia
3
Faculty of Civil Engineering, Universiti Teknologi Malayia, Skudai, Johor, Malaysia
* Corresponding author: rosna@uthm.edu.my
Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.