Issue |
E3S Web Conf.
Volume 34, 2018
International Conference on Civil & Environmental Engineering (CENVIRON 2017)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 8 | |
Section | Environment | |
DOI | https://doi.org/10.1051/e3sconf/20183402007 | |
Published online | 19 March 2018 |
Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching
1
Department of Mechanical Engineering, INTI International University, Jalan BBN 12/1, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan
2
Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 Selangor, Malaysia
* Corresponding author: ljwei84@yahoo.com
Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.