Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 02033 | |
Number of page(s) | 8 | |
Section | River morphodynamics and restoration | |
DOI | https://doi.org/10.1051/e3sconf/20184002033 | |
Published online | 05 September 2018 |
River improvement techniques for mitigating river bed degradation and channel width reduction in the sandy Hii River where sediment transport occurs at normal times
Research and Development Initiative, Chuo University, Japan
* Corresponding author: goto510@tamacc.chuo-u.ac.jp
In the sandy Hii River, a large amount of sediment yield from upper river basin had brought developments of braided channels covered with sand waves. In the braided channels, sediment materials on the river beds are capable to move in normal discharge conditions. In recent years, however, the sediment yield decreases due to constructions of check dams and ground sills in the upper river basin. Thus, the river beds downstream of the ground sill have gradually degraded and the main channel widths have been narrowed with the progressing bed degradation. Firstly, we clarified that the effects of non-equilibrium sediment transports around the ground sill during normal discharge conditions on the bed degradation and the channel width reduction by using annual observed data and numerical simulations for bed variations. In addition, we provided the river improvement techniques for mitigating bed degradation and channel width reduction by improving state of non-equilibrium sediment transports passing through the ground sill.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.