Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 05018 | |
Number of page(s) | 8 | |
Section | Fluid mechanics and sediment processes | |
DOI | https://doi.org/10.1051/e3sconf/20184005018 | |
Published online | 05 September 2018 |
Flow and Turbulence driven Water Surface Roughness and Gas Exchange Velocity in Streams
Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
* Corresponding author: noss@uni-landau.de
Gas exchange velocity in streams and rivers controls fluxes of atmospheric gases across the air-water interface and is commonly related to the turbulence at the water side. Similarly, river flow hydraulics influences the water surface roughness, which is frequently used (in terms of surface flow types) for eco- and morphological mapping of spatial variations of hydraulic conditions. We investigated the relationships between gas exchange velocity, water surface roughness and flow hydraulics for different surface flow types in a low-mountain stream. We used the flux chamber-method to estimate exchange velocity, a freely floating sphere (equipped with acceleration sensors) to measure water surface roughness, as well as a field-particle image velocimetry system for flow and turbulence measurements. The results demonstrate that the gas exchange velocity in smooth and rippled flows followed the same universal dependence on turbulent dissipation rates (with an empirical scaling coefficient at the upper limit) as observed in wind-driven systems. More rough flows were anisotropic and gas exchange velocity was stronger related to vertical components of turbulence parameters. We further explored the potential of using surface flow type evaluations and water surface roughness measurements for estimating gas exchange velocities at the reach scale and beyond.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.