Issue |
E3S Web Conf.
Volume 40, 2018
River Flow 2018 - Ninth International Conference on Fluvial Hydraulics
|
|
---|---|---|
Article Number | 06014 | |
Number of page(s) | 8 | |
Section | Extreme events | |
DOI | https://doi.org/10.1051/e3sconf/20184006014 | |
Published online | 05 September 2018 |
The German National Flood Protection Programme: Evaluating the impact of supraregional flood protection measures on extreme floods using hydrodynamic modelling
Federal Institute of Hydrology (BfG), Department of Water Balance, Forecasting and Predictions, 56068 Koblenz, Germany
* Corresponding author: schuh@bafg.de
After the disastrous flood events of June 2013 in the German Elbe and Danube catchments, the German government together with the federal states decided on the joint elaboration of a nationwide flood protection programme (NHWSP, 2015-2027+). Within the frame of this programme, the government supports the realization of large-scale retention measures for the improvement of supra-regional flood prevention. For scientific monitoring, the Federal Institute of Hydrology (BfG) was mandated to conduct a two-part preparatory ad hoc study (2014-2015) and a subsequent research project (2015-2019) evaluating the collective impact of the planned retention measures on flooding processes and flood peak reduction in the Danube, Elbe, and Rhine basins. Findings from the ad hoc study provided the government with first elements of evidence for taking its decision on the elaboration of the NHWSP programme, and supported the development of a modelling strategy for the accompanying research project. By using extensive sets of hydrodynamic models, the research project takes into account the complex interrelations between supra-regional flood formation, flooding process, and retention control concepts when evaluating flood reduction on catchment level. It is expected to technically substantiate the government's NHWSP programme by refining the criteria for identification and prioritization of measures.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.