Issue |
E3S Web Conf.
Volume 44, 2018
10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2018
|
|
---|---|---|
Article Number | 00063 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/20184400063 | |
Published online | 03 July 2018 |
Performance analysis of the thermoacoustic refrigerator with the standing wave and air as a working fluid
Warsaw University of Technology, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
* Corresponding author: jakub.kajurek@itc.pw.edu.pl
Thermoacoustic refrigerator is a new and emerging technology capable of transporting heat from a low-temperature source to a high-temperature source by utilizing the acoustic power input. These devices, operating without hazardous refrigerants and owning no moving components, show advantages of high reliability and environmental friendliness. However, simple to fabricate, the designing of thermoacoustic refrigerators is very challenging. This paper illustrates the impact of significant factors on the performance of the thermoacoustic refrigerator which was measured in terms of the temperature difference generated across the stack ends. The experimental device driven by a commercial loudspeaker and air at atmospheric pressure as a working fluid was examined under various resonator length and operating frequencies. The results indicate that appropriate resonator’s length and operating frequency lead to an increase in the temperature difference created across the stack. The maximum values were achieved for operating frequency equalled to 200 and 300 Hz whereas resonator length corresponded to the half-length of the acoustic wave for these frequencies. The results of experiment also confirm that relationship between these parameters is strongly affected by the stack spacing, which in this research was equalled to 0.4 mm.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.