Issue |
E3S Web Conf.
Volume 45, 2018
VI International Conference of Science and Technology INFRAEKO 2018 Modern Cities. Infrastructure and Environment
|
|
---|---|---|
Article Number | 00025 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/20184500025 | |
Published online | 30 July 2018 |
Artifisial replenishment of the deep aquifers
1
Belostok Technical University, Engineering Systems in Environment Protection Department, 15-351, Vejska str., 45, Bialystok, Poland
2
Belarusian State Technologycal University, Industrial Ecology Department, 220006, Sverdlova str., 13a, Belarus
* Corresponding author: a.gurinowicz@pb.bialystok.pl
On the basis of the analysis, laboratory and pilot studies that have been conducted, schemes of artificial replenishment of deep aquifers are proposed. These schemes allow a groundwater recharge in order to water intake with generate electricity using the energy of the water flow and provide clear water, which serves to replenish underground water. Experimental section of this technological scheme was designed and built in the region of water intake in Brest (Belarus), on which were carried out hydrogeological surveys. Based on the above results, it was suggested to use the energy of the water flow in a water-inject well to convert it into electrical energy. A method for artificial groundwater recharge, which simultaneously allows groundwater recharge to the target groundwater without expending energy, generation of electricity using the power of the water flow and produces high quality water through the use of ozonation, which serves to replenish the groundwater was proposed. This is achieved through the use of hydraulic ram pump water-lifting devices, combined with electric generators, and a device for water purification such as an ozone generator. The proposed scheme and well design also allows the removal of iron and manganese from underground water and can be organized by two options, depending on the water source.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.