Issue |
E3S Web Conf.
Volume 66, 2018
AG 2018 - 4th International Conference on Applied Geophysics
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 10 | |
Section | Geophysics in Geoengineering | |
DOI | https://doi.org/10.1051/e3sconf/20186601010 | |
Published online | 26 November 2018 |
Effectiveness of reducing seismic hazard by means of group winning blasting - case study from a copper ore mine in Poland
1
Wrocław University of Science and Technology, Wrocław, Poland
2
Graduate from Wrocław University of Science and Technology, Wrocław, Poland
* Corresponding author: anna.gogolewska@pwr.edu.pl
The copper ore deposit situated in the south-west of Poland is mined by three underground mines owned by KGHM Polish Copper JSC. Exploitation has been accompanied by rock burst hazard since the beginning. Thus, numerous different preventing measures have been developed such as temporary, organizational and long-term ones. However, no one has been able to predict the time, place and energy of a seismic event. The group winning blasting, with maximum number of blasted faces, is the most effective operation to reduce seismic threat. The more faces are blasted the more seismic energy should be reduced. The study aims at assessing the blasting effectiveness in inducing rock bursts and tremors. For this purpose, the seismic activity induced by mining and blasting were investigated. The number of blasting works and blasted faces as well as length of time between subsequent blasting works were analysed and related to provocation effectiveness. The linear correlation and different regressions were calculated to determine these relations. Moreover, the seismic energy reduction in the rock mass was evaluated by means of SRMS Index, which is a factor measured directly before and after blasting. The analyses covered one mine panel in the Polkowice-Sieroszowice copper mine over four-year period.
Key words: Copper ore deposit / Underground mining / Induced tremors / Rock burst / Group winning blasting
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.