Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 5 | |
Section | Smart Grid and Regulation | |
DOI | https://doi.org/10.1051/e3sconf/20186701004 | |
Published online | 26 November 2018 |
Tofu wastewater treatment using contact glow discharge electrolysis method and air injection
Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia
* Coresponding author: nadirakamilia@hotmail.com
Tofu wastewater is one of the most dangerous source of environmental pollutants. It is known that the COD of tofu wastewater can reach 8000 mg/L. Contact Glow Discharge Electrolysis (CGDE) method is an effective method in degrading complex pollutants contained in tofu wastewater, due to its ability to produce large quantities of OH radicals. This study aims to test the ability of the CGDE method in degrading the tofu wastewater by the addition air injection. In this method, several variations were made to determine the optimal airflow rate and initial concentration of tofu wastewater. Tofu wastewater degradation reached 73% for 120 minutes, with the final value of COD is 425 mg/L and BOD is 447 mg/L. Maximum conditions are obtained by using airflow rate 2.5 lpm, temperature 50°C, and initial concentration of tofu wastewater is 2000 ppm. The addition of air injection with airflowrate 2.5 lpm is able to reduce energy consumption by 37%. The results show that CGDE with air injection has the potential to degrade pollution parameter in tofu wastewater.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.