Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 02009 | |
Number of page(s) | 5 | |
Section | Bioenergy | |
DOI | https://doi.org/10.1051/e3sconf/20186702009 | |
Published online | 26 November 2018 |
Coaxial dielectric barrier discharge plasma reactor for biodiesel production from palm oil and methanol
Universitas Indonesia, Faculty of Engineering, Department of Chemical Engineering, Kampus UI Depok, Depok 16424, Indonesia
* Coresponding author: setijo.bismo@ui.ac.id
Biodiesel is one of renewable energy alternatives, as a substitution of diesel engine fuel or diesel oil. Indonesian palm oil contains the fatty acids needed for the synthesis of FAME (fatty acid methyl ester) as the basic ingredient of biodiesel. Conventional biodiesel synthesis methods, which generally use transesterification reactions with homogeneous and heterogeneous catalysts, have significant constraints due to the formation of relatively large quantities of glycerol compounds as well as requiring complex separation processes and considerable energy. The DBD (Dielectric Barrier Dicharge) plasma reactor can be a solution to overcome the above shortcomings. The purpose of this research is to perform performance test from design result of DBD plasma reactor especially biodiesel making process. The analytical methods for FAME products use GC-FAME and FTIR (Fourier Transform Infra Red) for chemical conversion related between triglyceride reactants and biodiesel products. The best operating conditions obtained from the hydrodynamic test showed a mixed flowrate of triglyceride/alcohol of 0.1318 L/min, gas flowrate (plasma carrier) of 2.5 L/min and a voltage of 220 Volts alternating current. Biodiesel is produced using palm oil and methanol as a liquid reactant and using argon as a plasma carrier gas in the reactor. Plasma is produced in DBD reactor using 1-phase PLN power, with a voltage of 220 VAC. The main advantage of the conversion process in this plasma reactor is the production of FAME without the formation of significant glycerin byproducts and the use of homogeneous or heterogeneous catalysts.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.