Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 02035 | |
Number of page(s) | 5 | |
Section | Bioenergy | |
DOI | https://doi.org/10.1051/e3sconf/20186702035 | |
Published online | 26 November 2018 |
Preliminary Study Of Local Catalyst For Low Cost Methanol Synthesis As Subsequence Process Of A Model System Of Biomass Fluidized Bed Catalytic Gasification
1
Center of Energy Resources Technology and Chemical Industry, Agency for the Assessment and Application of Technology, Indonesia
2
Gunma Uniersity, Japan
Biomass waste has been emerging as an alternative energy and fuel. Direct combustion of biomass leads to harmful substances such as NOx and CO which are environmentally unfriendly manner. Innovation of clean technologies like gasification would have a potential in developing technology to reduce the emissions of harmful substances into the environment. The syngas of biomass gasification is an intermediate product which can be converted further to various types of alternative fuels especially methanol. Agency for the Assessment and application of Technology (BBPT)-Indonesia in cooperation with Gunma University-Japan has been conducting assessment and application of environmentally friendly solid biomass wastes utilization technology under the SATREPS (Science and Technology Research Partnership for Sustainable Development) program. This work is a prolongation of biomass gasification process from empty fruit bunches (EFB) to produce syngas. Furthermore, the syngas has a potential as raw material to synthesize methanol. The study of methanol synthesis focused on the development of efficient and low-cost catalyst in term of low pressure and low temperature. The catalyst of methanol synthesis was prepared by co-precipitation method with copper basis. The experiments have been performed and tested in a once-through process by Low-Pressure Fixed Bed Reactor in Micromeritics unit at a mild operating condition. The result shows that catalyst CuO: ZnO: Al2O3 (47%: 37%: 15%) has a good performance at 20 bar and 270°C with methanol concentration in the gas product up to 1.15%. On the words, the local catalyst performance comparable with commercial catalysts at low pressure and low temperature.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.