Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 03046 | |
Number of page(s) | 5 | |
Section | Multifunctional and Advanced Materials | |
DOI | https://doi.org/10.1051/e3sconf/20186703046 | |
Published online | 26 November 2018 |
Mechanical Physicial Properties of Chlorella-PVA based Bioplastic with Ultrasonic Homogenizer
Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, Depok 16424, Indonesia
Public demand for environmentally friendly packaging material especially in food industry is increasing. One of the many solutions invented for this problem is the development of biodegradable plastic. Biopolymer can be mixed with synthetic polymer to produce biodegradable films with properties suitable for varying applications. This study examines the mechanical physical properties of Chlorellapolyvinyl alcohol (PVA) based bioplastic by pre-treating the Chlorella powder with ultrasonic homogenizer. Variation of Chlorella concentration and temperature was done during the ultrasonication. Before being used as bioplastic base, pre-treated Chlorella with different concentrations were equated. Bioplastic films were then prepared with the pre-treated Chlorella powder and PVA using solvent casting method. Mechanical physical properties of the pre-treated Chlorella films then compared with non pretreated Chlorella film as control. Mechanical test shows the increasing of bioplastic tensile strength up to 15,3 kgf/cm2 and elongation percentage up to 99,63%. Field emission scanning electron microscopy test shows the increasing of bioplastic homogenity and smoother surface with less pores. Fourier transform infrared analysis shows that there are crosslinkages between Chlorella and PVA. Thermal analysis by thermogravimetric analysis shows ultrasonication creates a more compact linkages. The performance of the film could suggest its potential as an eco-sustainable food packaging plastic material.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.