Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 03050 | |
Number of page(s) | 5 | |
Section | Multifunctional and Advanced Materials | |
DOI | https://doi.org/10.1051/e3sconf/20186703050 | |
Published online | 26 November 2018 |
The effect of RAFT polymerization on the physical properties of thiamphenicol-imprinted polymer
1
School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Malaysia
2
Advanced Nano Materials (ANoMA) Research Group, School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3
School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800 Minden, Pulau Pinang, Malaysia.
* Coresponding author: fshimal@umt.edu.my
The necessity to overcome limitation of conventional free radical polymerization, technology has shifted the way to find an effective method for polymer synthesis, called controlled radical polymerization (CRP). One of the most studied controlled radical system is reversible addition-fragmentation chain transfer (RAFT) polymerization. The method relies on efficient chain-transfer processes which are mediated typically by thiocarbonyl-containing RAFT agents e.g., dithioesters. The presented study revealed the potential benefit in applying RAFT polymerization towards the synthesis of molecularly imprinted polymer for thiamphenicol. They were synthesized in monolithic form using methacrylic acid, ethylene glycol dimethacrylate, azobisisobutyronitrile and acetonitrile as a functional monomer, cross-linker, initiator and porogen, respectively. The surface morphology was studied by scanning electron microscopy (SEM), structural characterization by Fourier transformed infrared (FTIR) and pore structures of polymers produced were characterized by nitrogen sorption porosimetry. SEM analysis showed MIPs produced by RAFT have smoother surface while porosity analysis showed the specific surface area was slightly larger compared to conventional polymerization methods. However FTIR showed the same pattern of spectra produced due to the same co-monomers used in the production. The results upon the uses of RAFT polymerization enables the production of imprinted polymers enhanced the physical properties compared to conventional polymerization.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.