Issue |
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
|
|
---|---|---|
Article Number | 04017 | |
Number of page(s) | 6 | |
Section | Eco Tropical Built Environment | |
DOI | https://doi.org/10.1051/e3sconf/20186704017 | |
Published online | 26 November 2018 |
Waste treatment of remazol blue compounds based on ozonation/AOP in a bubble column reactor
Universitas Indonesia, Faculty of Engineering, Department of Chemical Engineering, Kampus UI Depok, Depok 16424, Indonesia
* Coresponding author: setijo.bismo@ui.ac.id
Increased production in the textile industry has the potential to result in high dye waste water. Various conventional methods to handle with textile waste treatment have been done, but still considered not yet or less effective. The AOP technology (Advanced Oxidation Processes) applied in this research is a rapid degradation technology in textile wastes with advanced oxidation process through the formation of hydroxyl radical (OH) which is considered to optimize the degradation process of textile dye waste. This study aims to evaluate the performance of ozonation methods and AOP (O3/UV/H2O2) in dye degradation of textile wastewater containing remazol blue compounds. Both configuration methods used are optimized in several parameters such as waste flow rate, ozone voltage and pH to obtain maximum remazol blue degradation. From this study, the higher percentage to remazol blue degradation is 99.99%, which is achieved by AOP method, with double air injection air flow rate of 10 L/min and 0.25 L/min liquid flow rate.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.