Issue |
E3S Web Conf.
Volume 70, 2018
17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 8 | |
Section | Heat Transfer and Heat Exchangers | |
DOI | https://doi.org/10.1051/e3sconf/20187002010 | |
Published online | 03 December 2018 |
Experimental research on hydrodynamic instabilities during condensation of the pro-ecological refrigerant R1234yf in tubular minichannels
Technical University of Koszalin, Department of Energy, av. Raclawicka 15-17, PL 75-620 Koszalin, Poland
* Corresponding author: waldemar.kuczynski@tu.koszalin.pl
The following paper presents the results of preliminary experimental research on the influence of instabilities of a hydrodynamic type on the condensation phase change process in tubular minichannels. The research was focused on a new pro-ecological refrigerant, R1234yf, intended as a substitute for R134a that currently is being phased out. The flow condensation phase change process was investigated for both steady and un-steady conditions in singular tubular minichannels with an internal diameter d = {1,44; 2,30; 3,30} mm. The scope of the analysis of the experimental data covered an estimation of propagation velocities for both pressure and temperature instabilities as well as the shrinkage of the condensation zone. The results were also compared with the previous results obtained for the flow condensation phase change of R134a refrigerant in tubular minichannels with the same internal diameters.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.