Issue |
E3S Web Conf.
Volume 73, 2018
The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 5 | |
Section | Energy Planning, Policy, and Management | |
DOI | https://doi.org/10.1051/e3sconf/20187301018 | |
Published online | 21 December 2018 |
The Influence of Microbial Consortium and C/N Ratio to Biogas Production from Rice Husk Waste by Using Solid State Anaerobic Digestion (SS-AD)
1
Master Program of Environmental Science, School of Post Graduate Studies, Diponegoro University – Indonesia
2
Chemical Engineering Department, Engineering Faculty, Diponegoro University – Indonesia
* Corresponding author: hawalihashfi@gmail.com
Rice husk is one of agricultural waste which have a potential to be processed into biogas. The aim of this research was to study the effect of enzymatic pretreatment and C/N ratio to biogas production from rice husk by solid state anaerobic digestion (SS-AD). This research were operated in batch system and at room temperature. TS was set 21%. Enzymatic pretreatment was conducted using lignase enzyme. C/N ratio was varied from 35, 40, 45, and 50. The variation of C/N ratio is made by adding technical urea to the substrate. Biogas formed was measured by using water displacement method every two days. The result showed that enzymatic pretreatment could increase biogas production varied from 30 to 55 %. The highest biogas production was obtained at C/N ratio 35. Specific biogas production on C/N ratio of 35, 40, 45, and 50 were 11.6, 10.2, 9.8 and 9.4 ml/grTS, respectively. SS-AD has volumetric loading of biogas production higher than generally in liquid anaerobic digestion (L-AD). Combined with our previous research with variations of C/N ratio 20, 25, 30, and 35, we obtained an optimum C/N ratio at 35.
Key words: Biogas production / C/N ratio / rice husk / solid state anaerobic digestion
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.