Issue |
E3S Web Conf.
Volume 81, 2019
The 1st International Symposium on Water Resource and Environmental Management (WREM 2018)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/20198101020 | |
Published online | 30 January 2019 |
Finite Element Analysis of Shield Pipe Structure and Stress Cone Position of 10kV Cable Intermediate Joint
1
College of Information Science and Engineering, Huaqiao University, 361021 Xiamen, China
2
College of Information Science and Engineering, Huaqiao University, 361021 Xiamen, China
* Corresponding author: fangrm@126.com
The shielding tube and stress cone of the intermediate joint of XLPE cable accessory make the potential distribution along the insulation surface linearized to optimize the electric field and. By establishing the finite element model of the intermediate joint of 10kV cable accessory, the electric field distribution of different structure shielding tube and stress cone in different position of the joint is simulated and analyzed. The results show that the structure of shield tube and the position of stress cone are also a parameter characteristic which can not be ignored in the design, and they have a great influence on the distribution of the field strength of the intermediate joint. On the basis of finite element analysis, the optimum shape of shield tube and the best position of stress cone are obtained by comparing and analyzing the variation law of electric field intensity.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.