Issue |
E3S Web Conf.
Volume 90, 2019
7th Conference on Emerging Energy and Process Technology (CONCEPT 2018)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 9 | |
Section | Sustainable Energy | |
DOI | https://doi.org/10.1051/e3sconf/20199001008 | |
Published online | 02 April 2019 |
Synthesis of composite thin-film polymer consisting of tungsten and zinc oxide as hydrogen gas detector
Centre of Hydrogen Economy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
A composite polymer consisting of polyaniline (PANI) was synthesised via oxidative polymerisation by varying concentrations of transitional metal oxides and the presence of a hydrogen dissociation catalyst, palladium (Pd). The metal oxides chosen for this study were tungsten oxide (WO3) and zinc oxide (ZnO). The composite polymer samples were characterised using Fourier transform infrared (FTIR) spectroscopy where ultraviolet-visible (UV-Vis) spectroscopy was used to observe the optical changes of the thin films due to exposure to hydrogen. The FTIR spectra obtained confirmed the synthesis of PANI composite. Based on the UV-VIS analysis, PANI-ZnO composite polymer showed the highest difference in peak intensity before and after exposure to hydrogen with 11.4% difference.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.