Issue |
E3S Web Conf.
Volume 91, 2019
Topical Problems of Architecture, Civil Engineering and Environmental Economics (TPACEE 2018)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 10 | |
Section | Environmental Solutions for Waste and Wastewater Treatment | |
DOI | https://doi.org/10.1051/e3sconf/20199104003 | |
Published online | 02 April 2019 |
Low-temperature swirl method of burning combustible waste
Peter the Great St. Petersburg Polytechnic University, 195251, Saint Petersburg, Russia
* Corresponding author: trinchenko@spbstu.ru
Burning combustible industrial waste increases the efficiency of using raw materials while at the same time solving the issues of protecting the environment from pollution by eliminating waste dumps. The paper deals with the low-temperature swirl method of waste incineration of microbiological production hydrolytic lignin. A combustion device has been developed that allows using hydrolytic lignin as a fuel for the production of electrical energy and heat without illumination of the torch and with high efficiency and reduced emissions of gaseous pollutants into the atmosphere. On the basis of the developed model of the boiler TP-35U, a quantitative estimate of the level of nitrogen oxides was made when introducing the low-temperature swirl method. The results of the calculations show the advantages of low-temperature swirl combustion of hydrolytic lignin.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.