Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 02015 | |
Number of page(s) | 4 | |
Section | Laboratory Experimental Techniques: Element Scale | |
DOI | https://doi.org/10.1051/e3sconf/20199202015 | |
Published online | 25 June 2019 |
A sample formation procedure to obtain homogeneous post-erosion particle size distribution
Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
* Corresponding author: a.russell@unsw.edu.au
Internal erosion (suffusion) is caused by water seeping through the matrix of coarse soil and progressively transporting out fine particles. The mechanical strength of soils within water retaining structures may be affected after internal erosion occurs. However, most experimental investigations on the mechanical consequences of internal erosion have used triaxial tests on samples having nonhomogeneous particle size distributions along their lengths. Such nonhomogeneities arise from the most commonly used sample formation procedure, in which seeping water enters one end of a sample and washes fine particles out the other. In this paper a new soil sample formation procedure is presented which results in homogeneous particle size distributions along the direction of seepage, that is at all locations along a sample's length.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.