Issue |
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
|
|
---|---|---|
Article Number | 11012 | |
Number of page(s) | 5 | |
Section | Treated Geomaterials: Chemical, Microbial, Electrokinetic | |
DOI | https://doi.org/10.1051/e3sconf/20199211012 | |
Published online | 25 June 2019 |
Monitoring hydration process and quality of sand grouted with microfine-cement using shear wave velocity and electrical conductivity measurements
1
Kyung Hee University, Department of Civil Engineering, 17104 Yongin, South Korea
2
Korea University, School of Civil, Environmental, and Architectural Engineering, 02841 Seoul, South Korea
3
Jonnam National University, Department of Marine Civil Engineering, 59626 Yeosu, South Korea
4
Georgia Institute of Technology, School of Civil and Environmental Engineering, 30332 Atlanta, GA, USA
* Corresponding author: choohw@khu.ac.kr
This study aims at monitoring the grouting status such as hydration process and quality of sand grouted with microfine-cement using shear wave velocity (Vs) and electrical conductivity (EC) measurement techniques. The microfine-cement with the maximum particle size < 15 μm and the three angular sands with median particle sizes ranging from 0.47 mm to 1.01 mm were used in this study. The testing specimens were prepared at relative density ~ 70% and water to cement ratio = 1.0, 1.5, and 2.0 in a split plastic mold for the real time continuous measurements of Vs and EC, and for the unconfined compression tests at the end of curing time of 3, 7, 14, and 28 days. The results demonstrate that both unconfined compressive strength (UCS) and Vs show almost constant values after the curing period of 20-28 days; while, the variation of EC is negligible after the curing period of 10-20 days. Therefore, the shear wave velocity measurement technique can be superior to electrical conductivity measurement in terms of monitoring of hydration process of tested sands grouted with microfine-cement. However, both Vs and EC show strong linear relationship with UCS of tested materials, reflecting both non-destructive testing methods can be beneficially used for the quality evaluation of grouted materials.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.