Issue |
E3S Web Conf.
Volume 97, 2019
XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019)
|
|
---|---|---|
Article Number | 04013 | |
Number of page(s) | 8 | |
Section | Reliability of Buildings and Constructions | |
DOI | https://doi.org/10.1051/e3sconf/20199704013 | |
Published online | 29 May 2019 |
Variable moduli of soil strain
1
Tashkent Institute Irrigation and Agricultural Mechanization Engineers
2
Institute of Mechanics and Seismic Stability of Structures named after M.T. Urazbayev of the Academy of Sciences of the Republic of Uzbekistan
* Corresponding author: sultanov.karim@mail.ru
The experimental diagrams between stress and strain components for soft soils are non-linear. Nonlinear diagrams qualitatively differ for soils of undisturbed and disturbed structures. It is believed that the manifestations of nonlinear properties of soil are associated with micro-destruction of soil structure under compression and, therefore, with changes in its mechanical characteristics under strain. It follows that the modulus of elasticity, Poisson’s ratio, viscosity and other mechanical parameters are the variables in the process of soil strain. Based on this, from the experimental results given in scientific literature, the changes in the modulus of elasticity and plasticity of soil are determined depending on the values of compression strain. In the process of static and dynamic compression of soil it is almost impossible to determine the boundaries of elastic and plastic strains in soft soil. So, the modulus under soil compression is called the strain modulus. From published results of experiments on dynamic and static compression of soil the most informative ones have been selected. Processing the selected compression diagrams of soft soil, the secant moduli of strain for loess soil and clay have been determined. It is established that the moduli of strain of clay and loess soil under static and dynamic strain vary depending on the rate of strain, the state of the structure and the level of compressive load.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.