Issue |
E3S Web Conf.
Volume 97, 2019
XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019)
|
|
---|---|---|
Article Number | 06012 | |
Number of page(s) | 9 | |
Section | New Construction Technologies | |
DOI | https://doi.org/10.1051/e3sconf/20199706012 | |
Published online | 29 May 2019 |
Double-arm steel connector of glass façades
Czestochowa University of Technology, Faculty of Civil Engineering, Akademicka Street 3, 42-200 Częstochowa, Poland
* Corresponding author: imajor@bud.pcz.czest.pl
This paper presents a numerical analysis of a steel double-arm connector, according to the authors’ solution, designed for fixation of glass façades. The analysis was carried out in order to obtain a distribution of stresses and displacements, on the basis of which global displacements and maximum stresses were determined. An additional element of the solution was the use of the M8 bolt, as a linking element of the steel walls of both arms. The numerical simulation was performed using the ADINA program, which is based on the finite element method (FEM). The dynamic effect of wind gusts on the glass façade was assumed, taking into account both wind pressure and suction. The adoption of a rectangular element of the glass façade causes an unfavorable load distribution at the connection point. The conducted research allowed to determine displacements and stresses in a steel connector made of S355JR steel. The applicability of the proposed solution for glass façades with a height of up to 100 m has been demonstrated.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.