Issue |
E3S Web Conf.
Volume 98, 2019
16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference)
|
|
---|---|---|
Article Number | 10007 | |
Number of page(s) | 5 | |
Section | Disposal of Radioactive Waste: Geological, Hydrogeological and Geochemical Aspects | |
DOI | https://doi.org/10.1051/e3sconf/20199810007 | |
Published online | 07 June 2019 |
Sorption of 137Cs, 90Sr, Se, 99Tc, 152(154)Eu, 239(240)Pu on fractured rocks of the Yeniseysky site (Nizhne-Kansky massif, Russia)
1
St. Petersburg State University, Institute of Earth Sciences, 199034 St. Petersburg, Russia
2
Institute of Environmental Geology, Russian Academy of Sciences, 199004 St. Petersburg, Russia
* Corresponding author: k.rozov@spbu.ru
The study demonstrates the effect of sorption properties of fractured host rocks from the Yeniseysky site (Nizhne-Kansky rock massif, Krasnoyarsk region) on the migration of dissolved radioactive components (137Cs, 90Sr, 79Se, 99Tc, 152(154)Eu, 239(240)Pu) in the deep geological conditions of a high-level radioactive waste repository. Estimates of radionuclide distribution coefficients between the aqueous solution and fractured rocks obtained from sorption experiments. The influence of various petrographic types and fracture-filling substances on the retardation of radioactive components has been investigated. Based on the results of sorption experiments, we concluded that the type and attributes of rock discontinuities, as well as the mineral composition of the material in fractures, are crucial for the immobilization of radionuclides during their migration through a geological environment.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.