Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 03058 | |
Number of page(s) | 8 | |
Section | High Energy Performance and Sustainable Buildings | |
DOI | https://doi.org/10.1051/e3sconf/201911103058 | |
Published online | 13 August 2019 |
Study on environment conscious technologies in a super tall building: Evaluation of PV performance considering aerological climate
1 Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548 Japan
2 Mitsubishi Jisho Sekkei Inc., Marunouchi 2-chome Building, 2-5-1 Marunouchi, Chiyoda-ku, Tokyo, 100-0005, Japan
In recent years, buildings have tended to be taller, and their energy potential is expected be used effectively . Photovoltaics is considered one of technologies affected by air temperature, outside air velocity, and solar radiation from the aerological climate of supertall buildings with a height of 390 m. The energy potential of the “height” of photovoltaic power generation systems is affected by two factors: aerological climate and shadows cast by surrounding buildings. Taking these effects into account, the predicted annual power generation amount was calculated. At 390 m above ground, it was confirmed that the power generation amount was greater than that on the ground, when considering the effectiveness of photovoltaic systems. Then, we calculated the predicted annual power generation amount on each wall and roof surface of a tall building with a height of 390 m above the ground. By evaluating the energy-saving effect of adopting photovoltaic systems, we evaluated the photovoltaic system using the wall surface from the viewpoint of the primary energy reduction and primary energy consumption of the building.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.