Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 03060 | |
Number of page(s) | 6 | |
Section | High Energy Performance and Sustainable Buildings | |
DOI | https://doi.org/10.1051/e3sconf/201911103060 | |
Published online | 13 August 2019 |
Passive generation from a novel thermoelectric energy harvesting system model integrated with phase change material
Department of Architectural Engineering, Hanyang University, Republic of Korea
* Corresponding author: jjwarc@hanyang.ac.kr
The purpose of this research is to evaluate the performance of a novel model that incorporates a thermoelectric generator (TEG) and phase change material (PCM). The proposed model passively generates electricity using waste heat that accumulates at exterior wall surfaces. The main generator is a TEG. To maintain the temperature difference between the two sides of the TEG, PCM is located at its cold side—thus converging the heat transferred into latent heat. The proposed passive generation system is formed into a TEG-PCM block. The block can be stacked to form a wall or inserted into any part of a building that faces the sun. The experiment setup is based on a constant temperature method. The wall temperature profile is set according to solar radiation, convection, and radiative heat transfer. To replicate daily wall temperatures during the experiment, a heat plate is used to match a wall temperature profile. Step control was used for the heating plate. The resulting data shows the average temperature difference between the hot and cold sides of the TEG to be 10-20°C. The peak generated electricity was 0.08 W for a single module.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.