Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 03063 | |
Number of page(s) | 8 | |
Section | High Energy Performance and Sustainable Buildings | |
DOI | https://doi.org/10.1051/e3sconf/201911103063 | |
Published online | 13 August 2019 |
Environmental impacts for polyurethane panels
1 University IUAV of Venice, S. Croce 191, 30123, Venezia, Italy
2 Stiferite Spa, Viale della Navigazione interna 54/5, 35129, Padova, Italy
* Corresponding author: eguolo@iuav.it
According to the European targets for 2030, for managing a policy of improving the environmental sustainability of buildings it is essential to assess the buildings and building components impacts both in the construction and in the utilization phases. The use of building is essential on the environmental impacts (equal to about 90%) as consequence the commitment must be aimed at reducing energy consumption and CO2 emissions of buildings during their lifetime, through correct design and proper selection of materials and technologies; above all, the use of thermal insulation materials is fundamental. A useful support tool for manufacturers and designers for the eco-design innovation of products and production processes is the LCA - Life Cycle Assessment: the assessment allows to identify and to quantify energy, consumed materials and residues released as environment impact during the processes. Comparison of the environmental impact data of the different products it is possible by adopting the EPD - Environmental Product Declarations approach, which envisages, for each group of products, the elaboration of a specific technique, the PRC - Product Category Rules. In the building sector, among the thermal insulating materials currently in use, the rigid expanded polyurethane (thermoset polymeric insulation products with a substantially closed cell structure including both polymer types based on PIR and PUR), allows to obtain excellent characteristics of very low density masses, resulting in a reduction in energy consumption deriving from transport, installation and disposal or recycling at the end of life. Numerous studies on environmental impacts during the polyurethane life cycle have shown that the amount of resources consumed for the production of polyurethane foam is amortized in the use phase of buildings thanks to the energy savings determined by thermal insulation. Very important features of polyurethane is the high durability in time (higher or equal to the life of the building). This is demonstrated following some tests of physical characterization and verification of durability of rigid polyurethane insulation panels used in different types of building and construction, without maintenance: according to the determination of thermal conductivity and of the compressive strength is proven as the values are unchanged despite the years of use (over 40 years). The paper presents the LCA evaluation of a polyurethane panel; the durability of thermal properties has been verified by experimental tests.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.