Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 06078 | |
Number of page(s) | 8 | |
Section | Sustainable Urbanization and Energy System Integration | |
DOI | https://doi.org/10.1051/e3sconf/201911106078 | |
Published online | 13 August 2019 |
In-process measurement of urban energy-oxygen-pollution for the main residential building areas in Timisoara
West University of Timisoara, Nicholas Georgescu-Roegen Interdisciplinary Platform, 300223 Vasile Parvan 4A/704C, Romania
* Corresponding author: vasile.dogaru@e-uvt.ro
The development of cities is below the target in reducing pollution and high population density. The environmental agency formulated the rules for the construction of spatial area-based balances of energy use-oxygen production-pollution for the new Building Code of Timisoara. Studies for households or traffic typically evaluate separately energy, oxygen production or pollution. In this research, we have developed a flow-funds model for conterminous residential building processes with spatial-temporal borders. We are modeling the integrated processes for energy-oxygen-pollution in 14 urban zones for households-buildings with segmentation of partial processes for energy-pollution and separately for oxygen flows. The segmentation is based on modeling of 338 streets at nano-levels as street segments. We have found a new solution for the boundaries in place of the 73 Territorial References Units in the in force Building Code. We made the distinction between area-point and in-process measurement. The modeling revealed that national energy-pollution balances did not integrate oxygen urban production which overestimates the CO2 reported figures. The daily intensity of carbon sequestration in the warm season for 14 zones in Timisoara varies between 0.21-0.70 grams per meter squared for residential areas. The different carbon sequestration intensity justifies differentiated measures to reduce the pollution in residential areas.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.