Issue |
E3S Web Conf.
Volume 116, 2019
International Conference on Advances in Energy Systems and Environmental Engineering (ASEE19)
|
|
---|---|---|
Article Number | 00040 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/201911600040 | |
Published online | 24 September 2019 |
Studies on PV power plant designing to fulfil the energy demand of small community in Poland
Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
* Corresponding author: e.krawczak@pollub.pl
Although the total energy production from fossil fuels in Poland has been decreasing for the past few years, still at least 80% of the total energy consumption derives from coal. To reduce this high consumption rate alternative energy sources should be developed. One of the most promising is photovoltaics. This paper presents modeling studies of large scale PV power plant design to fulfil the electricity needs of a small community located in Poland. Based on the energy demand prognosis and monthly solar radiation data PV power plant capacity and a number of modules were computed. The distance between rows of the modules was also determined to avoid the shadowing effect. System configuration and energy production simulations were carried out using DDS-Cad software. Results of energy calculations were compared with the yearly energy needs of the studied community. Reduction of greenhouse gases emission was estimated. Modeling results show that proposed 3.1 MWp photovoltaic plant can produce enough energy to fulfil the yearly energy demand of the households in the studied area. Moreover, significant reduction of CO2 emission and other gaseous pollutants were observed.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.