Issue |
E3S Web Conf.
Volume 116, 2019
International Conference on Advances in Energy Systems and Environmental Engineering (ASEE19)
|
|
---|---|---|
Article Number | 00073 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/201911600073 | |
Published online | 24 September 2019 |
The impact of ETC/PCM solar energy storage on the energy performance of a building
1
Czestochowa University of Technology, ul. J. H. Dąbrowskiego 69, 42-201 Czestochowa, Poland
2
SUNEX S.A., Piaskowa 7, 47-400 Racibórz, Poland
* Corresponding author: rsekret@is.pcz.czest.pl
The main goal of this investigation was to increase the solar fraction and reduce the demand for non-renewable primary energy in a building heating system. Thermal performance of the prototype evacuated tube solar collector/storage integrated with a PCM (ETC/PCM) was analyzed. Technical grade paraffin with onset melting point of 51.24°C was used as a PCM. It has been shown that the highest solar energy fraction in the building heating system was obtained with a thermal load of 40 W·m-2 and the highest the surface area of ETC/PCM aperture in relation to the heating surface area value of 0.2. Lowering the heating system parameters from 45/35°C to 35/25°C allowed for an increase in heat output from solar energy in the range from 2.71% to 5.44%. The largest increase in the solar fraction was in the range of the ratio of the surface area of the solar collector ETC/PCM aperture to the area of the heated building from 0.03 to 0.07. In summary, obtained results indicated that the proposed solution allowed reduction of non-renewable primary energy demand in conceptual heating system from 6% to 27% depending on the heat load of the building and the aperture area of the ETC/PCM.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.