Issue |
E3S Web Conf.
Volume 118, 2019
2019 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019)
|
|
---|---|---|
Article Number | 01059 | |
Number of page(s) | 4 | |
Section | Energy Engineering, Materials and Technology | |
DOI | https://doi.org/10.1051/e3sconf/201911801059 | |
Published online | 04 October 2019 |
One-pot synthesis of polyaniline/Fe3O4 nanocomposite in ionicliquid: electrical conductivity and magnetic studies
School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050
* Corresponding author: fenghx@lut.cn
One-pot synthesis of polyaniline/Fe3O4 nanocomposite in 1-methyl-3-alkylcarboxylic acid imidazolium chloride ([CMMIm]Cl) ionic liquid (IL) was introduced for the first time in this work. Transmission electron microscopy (TEM), X-ray diffraction (XRD), four probes method and vibrating sample magnetometer (VSM) were used to explore the influence of IL on the structure, conductivity and magnetic properties of polyaniline/Fe3O4 composite. Compared with Fe3O4 particles prepared in water, the results show that Fe3O4 particles prepare in imidazolium-based ionic liquid were more regular in shape and dispersed uniformly. So the Fe3O4 nanoparticles prepared in IL can easier serve as cores to form the polyaniline/Fe3O4 nanocomposite via in situ chemical oxidative polymerization of aniline molecule. The saturation magnetization of polyaniline/Fe3O4 nanocomposite prepared in ionic liquid shows about 2 times higher than polyaniline/Fe3O4 composite prepared in water. And the conductivities of PANI/Fe3O4 composite prepared in IL decreased and the saturated magnetization increased with the increasing amount of Fe3O4.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.