Issue |
E3S Web Conf.
Volume 118, 2019
2019 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019)
|
|
---|---|---|
Article Number | 02066 | |
Number of page(s) | 6 | |
Section | Energy Equipment and Application | |
DOI | https://doi.org/10.1051/e3sconf/201911802066 | |
Published online | 04 October 2019 |
Thermal Management Optimization for a Wireless Charging System of Electric Vehicle with Phase Change Materials
1
College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2
College of Electric Power Engineering, Shanghai University of Electric Power, Shanghai 200090, China
* Corresponding author: fuzaiguo@shiep.edu.cn
The high-power wireless charging system for the electric vehicle (EV) generates irreversible magnetic loss and quantities of heat during the charging process. Using thermal management with phase change material (PCM) can reduce the temperature rising rate and ensure the operation safety. A thermal management optimization for a 6.6 kW wireless EV charging system with PCMs was studied. The mathematical model of the heat transfer process in the charging system with thermal management was developed. It was solved by a MATLAB procedure and verified by an experimental measurement. A concept of effective time was proposed as the optimization index to evaluate the performance of the thermal management system. The results indicated that the thermal conductivity of the PCM needed to be improved for a better thermal performance. The modified PCM as paraffin with expanded graphite (EG) was adopted and the optimum thickness and thermal properties were obtained. The effective time by using the optimal PCM layer was 3 and 1.2 times that by using the original PCM layer for the charging system with 5% and 10% energy loss, respectively. The optimal layer can keep the temperature of the charging system below 60 °C in long-term operation.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.