Issue |
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 5 | |
Section | Energy Systems and Complexes | |
DOI | https://doi.org/10.1051/e3sconf/201912401017 | |
Published online | 25 October 2019 |
On a new approach to assessing the energy characteristics of substances
Kazan State Power Engineering University, Kazan, Russia
* Corresponding author: sirotkin-49@mail.ru
Within the unified model of chemical bonding and methods of quantitative assessment of components of mixed chemical interaction between the elements in compounds, developed by the authors, a new approach was developed to assess the structural and energy characteristics of substances and fuels. It comprises establishing a correlation between the difference of bonds’ chemical components of reactants and end products. Changes in the chemical bond components affect such characteristics of chemical reactions as the heat of formation of the reaction products, their redox properties, whether reaction is endoor exothermic, as well as the heat of fuel combustion reactions. This approach is an additional reserve for improving the methods for assessing the energy characteristics of fuels and increasing the efficiency of energy production technologies.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.