Issue |
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
|
|
---|---|---|
Article Number | 01031 | |
Number of page(s) | 5 | |
Section | Energy Systems and Complexes | |
DOI | https://doi.org/10.1051/e3sconf/201912401031 | |
Published online | 25 October 2019 |
Efficiency of biomass and solid waste energy processing based on the cogeneration plant with plasma heat source
1
Kazan National Research Technological University, Kazan, Russia
2
Kazan State Power Engineering University, Kazan, Russia
3
Vladimir State University, Vladimir, Russia
* Corresponding author: almaz.sadrtdinov@gmail.com
The urgency of the use of low-grade organic fuels and wastes, in particular municipal solid (MSW), is due to recent developments in energy saving and energy efficiency. This directly relates to the direction of renewable energy, responsible for involving all wastes, such as MSW, in fuel energy balance to provide heat and electricity to decentralized power supply areas. This paper presents the process of high-temperature thermal decomposition of MSW in the steam-air medium of plasma under excessive pressure to generate electrical energy. The high enthalpy and great reactivity of the plasma gasifying agent makes it possible to carry out the process of thermal decomposition in the autothermal mode. The high-temperature mode and the use of plasma blast provides a high degree of conversion of waste into combustible components (CO, CH4, H2), the resulting gas mixture. The technological process significantly reduces the formation of potentially hazardous substances that affect the kinetics of the process. After generating electrical energy, the exhaust gases are subjected to complex purification from the products of combustion and cogeneration of residual thermal energy. In particular, purification from toxic nitrogen oxides (NOx) occurs, the formation of dioxins, furans and other dangerous derivatives of chloride compounds is prevented. Thermal energy, discharged at various sites of the plant, is almost completely used for the needs of the cogeneration plant and its units, which allows to achieve a total efficiency of at least 86%. The ability of the cogeneration plant to work on various types of solid waste gives a wide range of applications and operational capabilities.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.