Issue |
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
|
|
---|---|---|
Article Number | 06003 | |
Number of page(s) | 3 | |
Section | Multi-Phase Flows | |
DOI | https://doi.org/10.1051/e3sconf/201912806003 | |
Published online | 08 November 2019 |
Comparative Study for the Prediction of Cavitating Flow inside a Square-Edged Orifice using Different Commercial CFD Software
1
Korea Institute of Nuclear Safety, Regulatory Assessment Department,
34142,
Daejeon,
Korea
2
University of Science and Technology, Nuclear and Radiation Safety Department,
34113,
Daejeon,
Korea
* Corresponding author: ghlee@kins.re.kr
Nuclear power plant operators conduct in-service testing (IST) to verify the safety functions of safety–related pumps and valves and to monitor the degree of vulnerability over time during reactor operation. The system to which the pump and valve to be tested are installed has various sizes of orificesfor flow control and decompression. Rapid flow acceleration and accompanying pressure drop may cause cavitation inside the orifice, which may result in orifice degradation and structural damage. Though licensing applications supported by using Computational Fluid Dynamics (CFD) software are gradually increasing for IST–related problems, there is no CFD software which obtains a licensing from the domestic regulatory body until now. In this paper, to assess the prediction performance of different commercialCFD software for the analysis of cavitating flow inside a square–edged orifice, the simulation was conducted with ANSYS CFX and FLUENT R18.1. The results predicted were then compared with the measured data.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.