Issue |
E3S Web Conf.
Volume 136, 2019
2019 International Conference on Building Energy Conservation, Thermal Safety and Environmental Pollution Control (ICBTE 2019)
|
|
---|---|---|
Article Number | 02017 | |
Number of page(s) | 5 | |
Section | Integrated Application of Renewable Energy in Buildings | |
DOI | https://doi.org/10.1051/e3sconf/201913602017 | |
Published online | 10 December 2019 |
Ocean energy harvester based on piezoelectric VIV using different oscillators
1 School of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
2 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
* Email: xiahui@mail.iee.ac.cn, liuguoqiag@mail.iee.ac.cn
A finite element fluid-solid coupling model for ocean energy harvester based on piezoelectric vortex-induced vibration(VIV) is established. Given that the Karman Vortex Street is generated after the fluid passes through the vibrator. The model includes the conversion of water flow energy to VIV energy and the capture of electrical energy by piezoelectric devices. And the output voltage curve is obtained by coupling with piezoelectric beam. Based on the fluid-solid coupling calculation, the dynamic response characteristics of the oscillator under different parameters such as shape of oscillators and fluid velocity are studied. The voltage output of piezoelectric beam in cylindrical, semi-cylindrical and regular triangular oscillators is analyzed. Simulation results show that the output voltage and pressure difference are largest in regular triangular oscillator system compared with the cylindrical and semi-cylindrical system. When changing fluid velocity, it is found that the higher the velocity of the water fluid be, the higher the output voltage be. When the given fluid velocity reaches 1 m/s, the maximum output voltage of cylindrical, semi-cylindrical and regular triangular piezoelectric energy harvesters reaches 0.045V, 0.08V, and 0.085V respectively. Under the same fluid velocity, change the ratio of height and width of oscillator, and find that the higher ratio of height and width of oscillator is more suitable to harvest the energy of VIV.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.