Issue |
E3S Web Conf.
Volume 136, 2019
2019 International Conference on Building Energy Conservation, Thermal Safety and Environmental Pollution Control (ICBTE 2019)
|
|
---|---|---|
Article Number | 06027 | |
Number of page(s) | 4 | |
Section | Monitoring and Treatment of Water Pollution | |
DOI | https://doi.org/10.1051/e3sconf/201913606027 | |
Published online | 10 December 2019 |
Removal of Nitrogen and Phosphorus from Wastewater by Modified Pyrite in a Sequencing Batch Reactor (SBR)
1 School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
2 Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230601, China
3 Key Laboratory of Huizhou Architecture in Anhui Province, Hefei 230601, China
* Corresponding Author: Wei-Hua Li; email: liweihua9@126.com;
The removal efficiency of nitrogen and phosphorus is challenging in the conventional biological nitrogen and phosphorus removal processes. In this study, the modified pyrite was used as the fillings of se-quencing batch reactor (SBR) in order to improve the efficiencies of nitrogen and phosphorus removal from wastewater. The results showed that SBR with the modified pyrite could significantly improve the removal efficiencies of nitrogen and phosphorus when compared with that in SBR without fillings (control SBR). The average influent ammonia nitrogen (NH4+-N) and total phosphorus (TP) were 6.96±0.17 mg L-1 and 6.94±0.01 mg L-1, respectively. The average NH4+-N and TP removals of modified pyrite constructed SBR were 49.65±19.49% with 3.54±1.31 mg L-1 of average effluent NH4+-N and 76.20±6.55% with 1.84±0.46 mg L-1 of average effluent TP, respectively. While the average NH4+-N and TP removal efficiencies of con-trol SBR were only 34.76±11.28% and 56.28±0.11%. The mechanisms of the SBR with enhanced simulta-neous nitrogen and phosphorus removals might be anaerobic and aerobic oxidations of modified pyrite, and phosphorus retained in the SBR of modified pyrite was mostly in the form of Fe-bound-P.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.