Issue |
E3S Web Conf.
Volume 140, 2019
International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2019)
|
|
---|---|---|
Article Number | 09002 | |
Number of page(s) | 6 | |
Section | Innovative Technologies in Environmental Management | |
DOI | https://doi.org/10.1051/e3sconf/201914009002 | |
Published online | 18 December 2019 |
Thawing of permafrost soils under the water intake facility (the Taas-Yurekh river, Yakutia, Russia)
1
Russian State Geological Prospecting University n.a. S. Ordzhonikidze, Moscow, Russian Federation
2
Moscow state University n.a. M. V. Lomonosov, Moscow, Russian Federation
* Corresponding author: ddshubina@gmail.com
Infrastructure development and oil field exploitation are facing great difficulties. This is caused by the engineering geological conditions changing and transformation of the upper part of the section due to the anthropogenic influence. The article contains the results of researching permafrost soils conditions in the bucket-type water intake facility foundation near the Taas-Yurekh River, Yakutia, Russia (the eastern block of Srednebotuobinskoye oil/gas-condensate field). As a result of the research area engineering geological conditions analysis, the geotechnical scheme was constructed, and on the base of it the soils thawing depth mathematical modelling due to the water heating influence was performed. The soils thawing depth calculation due to the heating of the water in the reservoir was performed with the TEMP/W software of GeoStudio, which is based on the finite element method. The forecast for the end of the facility lifetime was based on the temperature measurements in the reservoir and the soil surface. The calculations results show that the maximum thawing depth due to the water heating influence will be 36 meters with the lower border temperature of -1°C, and it decreases to 16 meters with -10°C lower border temperature.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.