Issue |
E3S Web Conf.
Volume 141, 2020
2019 Research, Invention, and Innovation Congress (RI2C 2019)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 10 | |
Section | Applied Biotechnology | |
DOI | https://doi.org/10.1051/e3sconf/202014103010 | |
Published online | 10 January 2020 |
Renewable Biodiesel Production from Oleaginous Yeast Biomass Using Industrial Wastes
1
Bioprocess Engineering and Biotechnology Center, Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok,
Bangkok,
Thailand
2
Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut’ s University of Technology North Bangkok,
Bangkok,
Thailand
3
Chemical and Process Engineering Program, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok,
Bangkok,
Thailand
* Corresponding author: sasithorn.k@sci.kmutnb.ac.th
The accumulation lipid from oleaginous microorganisms is recognized as a second generation fuel. Biooil is known to as intracellular product of oily yeast utilizing various carbon substrates and converting different quantities of lipids in the form of triacylglycerols. This second generation fuel can be used to make biodiesel via a transesterification process. This study investigated the morphological characteristics of eight strains of Thai oleaginous yeasts via microscopy and analyzed the fatty acid profiling of yeasts cultured in three carbon sources: glucose, sugar cane molasses and crude glycerol in order to estimate biodiesel properties. To approach this goal, batch fermentations were used to culture eight yeast strains, Rhodosporidium toruloides TISTR 5123, TISTR 5154, TISTR 5149, Yarrowia lipolytica TISTR 5054, TISTR 5151, TISTR 5621, Rhodotorula glutinis TISTR 5159 and Rhodotorula graminis TISTR 5124 for 96 h under 30°C at 250 rpm. Result revealed that eight yeast strains contained significant amounts of fatty acids and lipids and accumulated mainly palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C 18:1) and linoleic acid (C18:2), and they are suitable for the production of biodiesel. Fatty acid productions and profiles indicated that these yeast strains can be potentially used as the triacylglycerols producers for biodiesel production.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.