Issue |
E3S Web Conf.
Volume 145, 2020
2019 International Academic Exchange Conference on Science and Technology Innovation (IAECST 2019)
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 4 | |
Section | International Conference on Biotechnology and Food Science | |
DOI | https://doi.org/10.1051/e3sconf/202014501021 | |
Published online | 06 February 2020 |
Experimental study on the sEMG of "joint angle effect" of human muscle strength—Taking biceps brachii as an example
1 Department of sports, Jiangxi Teachers College, Yingtan, Jiangxi, 335000, China
2 Institute of sports, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
3 Laboratory, Yuxian Jijiazhuang Middle School, Zhangjiakou, Hebei, 075735, China
* Corresponding author’s e-mail: gaojianxin1985@126.com
In the experiment, the author used wave plus wireless surface electromyography system (SEMs + 3-axis acceleration sensor) made in Italy and wave wireless EMG software system, high-definition high-speed camera and human joint angle measuring instrument. Taking human biceps brachii as an example, the static and dynamic isometric contraction of biceps brachii was completed surface electromyography. In the experiment, the surface electromyography of biceps brachii was measured at 30°, 60°, 90°, 120°, 150°, 180° and the surface electromyography of biceps brachii was measured at the same time when the biceps brachii was not loaded or when the biceps brachii was loaded. Secondly, the surface electromyography of biceps brachii was measured at the same time when the biceps brachii completed the whole process of flexion and extension of the elbow (centripetal and centrifugal). Finally, the paper combined with HD The effect of joint angle on the contraction of biceps brachii muscle was analyzed by camera technique. The results show that the static contraction force of biceps brachii is different when the elbow joint is at different angles; in addition, when the dynamic contraction, the contraction force of biceps brachii is inversely proportional to the angle of elbow joint.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.