Issue |
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 10 | |
Section | Core Analysis in a Digital World | |
DOI | https://doi.org/10.1051/e3sconf/202014601001 | |
Published online | 05 February 2020 |
Density Functional Hydrodynamics in Multiscale Pore Systems: Chemical Potential Drive
1
Schlumberger, Schlumberger Moscow Research, 113, Pudovkina Street, Moscow 119284, Russia
2
Schlumberger, Schlumberger Reservoir Labs, 6350 West Sam Houston Pkwy N, Houston, TX 77041, Houston, USA
* Corresponding author: nevseev@slb.com
We use the method of density functional hydrodynamics (DFH) to model compositional multiphase flows in natural cores at the pore-scale. In previous publications the authors demonstrated that DFH covers many diverse pore-scale phenomena, starting from those inherent in RCA and SCAL measurements, and extending to much more complex EOR processes. We perform the pore-scale modelling of multiphase flow scenarios by means of the direct hydrodynamic (DHD) simulator, which is a numerical implementation of the DFH. In the present work, we consider the problem of numerical modelling of fluid transport in pore systems with voids and channels when the range of pore sizes exceed several orders of magnitude. Such situations are well known for carbonate reservoirs, where narrow pore channels of micrometer range can coexist and interconnect with vugs of millimeter or centimeter range. In such multiscale systems one cannot use the standard DFH approach for pore-scale modeling, primarily because the needed increase in scanning resolution that is required to resolve small pores adequately, leads to a field of view reduction that compromises the representation of large pores. In order to address this challenge, we suggest a novel approach, in which transport in small-size pores is described by an upscaled effective model, while the transport in large pores is still described by the DFH. The upscaled effective model is derived from the exact DFH equations using asymptotic expansion in respect to small-size characterization parameter. This effective model retains the properties of DFH like chemical and multiphase transport, thus making it applicable to the same range of phenomena as DFH itself. The model is based on the concept that the transport is driven by gradients of chemical potentials of the components present in the mixture. This is a significant generalization of the Darcy transport model since the proposed new model incorporates diffusion transport in addition to the usual pressure-driven transport. In the present work we provide several multiphase transport numerical examples including: a) upscaling to chemical potential drive (CPD) model, b) combined modeling of large pores by DFH and small pores by CPD.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.