Issue |
E3S Web Conf.
Volume 148, 2020
The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 7 | |
Section | Green Cities, Eco Industries, and Sustainable Infrastructure | |
DOI | https://doi.org/10.1051/e3sconf/202014801003 | |
Published online | 05 February 2020 |
The effect of artificial support material existence on removal of organic and nutrient in laboratory scale using plug flow reactor (PFR)
1 Environmental Engineering Master Program, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung
2 Program Study of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung
* Corresponding author: aphirtasarah@gmail.com
Artificial support material was examined to determine the removal capacity of organic pollutants and nutrients on laboratory scale using PFR system. The experiment was performed using artificial water with similar characteristics to Cikapayang River in three PFRs of 10.78 L. The PFRs were made of PVC pipes filled with an inert chemical substrate as an artificial support material. The process of pollutants removal in the PFR relies on a biological layer (biofilm) grown on the surface of the material support. Three type of C:N:P ratio used in this study were 30:15:1, 75:25:2, and 180:35:3. The results showed that the maximum removal efficiency of TSS, TN, TP, and COD in the preliminary tests were 85%, 87%, 71% and 79%, respectively. Moreover, the maximum water absorption capacity result was up to 30.8%. Organic substrate removal rate compared with first order and Strover-Kincannon substrate removal models prediction. The best fit model for this experiment was Stover-Kincannon model, with the average correlation coefficient up to 90% for all of the three reactors. SEM analysis shown that the microorganisms shape is coccus with the average size of 5 µm.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.