Issue |
E3S Web Conf.
Volume 148, 2020
The 6th Environmental Technology and Management Conference (ETMC) in conjunction with The 12th AUN/SEED-Net Regional Conference on Environmental Engineering (RC EnvE) 2019
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 4 | |
Section | Waste to Energy and Resources | |
DOI | https://doi.org/10.1051/e3sconf/202014802002 | |
Published online | 05 February 2020 |
Evaluation of Pb (II) Removal from Water Using Sodium Alginate/Hydroxypropyl Cellulose Beads
Department of Chemical Engineering and Technology, MSU-Iligan Institute of Technology, Iligan City, Philippines
* Corresponding author: rodel.guerrero@g.msuiit.edu.ph
This study examined the removal of Pb2+ ions from aqueous solution with two different lead concentrations using a hydrogel-forming polymer based on hydroxypropyl cellulose (HPC) and sodium alginate (SA). The feasibility of the adsorption behavior of SA/HPC beads has been investigated with three varying ratios of 50:50, 75:25 and 100:0 under a stir condition. The adsorption experiments were done to determine the effects of contact time, lead concentration and SA-HPC ratio to the adsorption capacity of SA-HPC hydrogel beads. The results showed that the ratio 75:25 showed higher adsorption capacity compared to 100:0 and 50:50. It showcased 47.72 mg/g adsorption capacity and 95.45% adsorption percentage after three hours of contact time. The adsorption kinetic model indicated that the adsorption of Pb2+ ions onto the beads followed a pseudo-second order kinetic equation. This means that the adsorption mechanism shows a chemisorption process and its sole rate-limiting step is intraparticle diffusion.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.