Issue |
E3S Web Conf.
Volume 164, 2020
Topical Problems of Green Architecture, Civil and Environmental Engineering 2019 (TPACEE 2019)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 16 | |
Section | Energy Efficiency in Transportation | |
DOI | https://doi.org/10.1051/e3sconf/202016403001 | |
Published online | 05 May 2020 |
Non-contact monitoring for assessing potential bridge damages
University of Maribor, Faculty of Civil Engineering, Transportation Engineering and Architecture, 17, Smetanova, 2000, Maribor, Slovenia
* Corresponding author: bostjan.kovacic@um.si
Structural monitoring of objects is primarily executed to assess external and internal effects on the object, in order to ensure the safety of people, animals, and material assets. Such monitoring can be executed through various methods, depending on the object, conditions for execution, and purpose of the monitoring. In this case, the focus is on the execution of the monitoring of Maribor footbridge, where the dynamic effects of the object are monitored. For this purpose, geophone, accelerometer, and geodetic methods—using Global Navigation Satellite System (GNSS) and Robotic Total Station (RTS) equipment—are used, of which one is controlled by the additional programme GeoComZG. The emphasis of our experiment is on the application of non-contact geodetic methods, with which the measurements of dynamic response are typically performed, as they enable measurements up to 30 and 100 Hz with RTS and GNSS, respectively. In this article, the application of various procedures of non-contact data capture on the footbridge are detailed and a comparison and analysis of the obtained values for monitoring the dynamic response of the structure are presented.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.