Issue |
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
|
|
---|---|---|
Article Number | 00025 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202016800025 | |
Published online | 06 May 2020 |
Investigation of oscillations of platform on isotropic supports excited by a pendulum
Central Ukrainian National Technical University, 25006, Kropyvnytskyi, Universytetskyi Ave., 8, Ukraine
* Corresponding author: filimonikhin@ukr.net
Within the framework of a flat model, steady-state modes of motion of a system composed of a platform on isotropic elastic-viscous supports, a shaft on a platform, and a pendulum freely mounted on a shaft are investigated. The developed methodology was used in the studies, based on the energy method, the theory of bifurcations of motions, and the idea of a parametric solution to the problem. All steady-state modes of motion were found. It is established that these are modes of the pendulum jamming. Each mode is characterized by a corresponding jamming frequency. Depending on the velocity of rotation of the shaft, there may be one or three possible jamming frequencies. When there is only one jamming frequency, the corresponding mode of motion is globally asymptotically stable. When there are three jamming frequencies, locally asymptotically stable modes with the smallest and highest jamming frequencies of the pendulum. The smallest jamming frequency of the pendulum is close to resonance. This mode can be used to excite resonant vibrations in vibrating machines. The highest jamming frequency of a pendulum is close to the shaft rotation velocity. This mode can be used to excite non-resonant vibrations in vibrating machines.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.